Kevin Roth

  • e-mail
  • room CAB F 42.1
  • address Universitätstrasse 6, 8092 Zürich, Switzerland


I am currently pursuing a joint PhD in the Data Analytics group under the supervision of Prof. Thomas Hofmann at ETH and Dr. Sebastian Nowozin at Google Brain Berlin. My research focuses on Robustness and Regularization in Adversarial Deep Learning, more specifically robustness to adversarial attacks (Adversarial Examples) and Generative Adversarial Networks (GANs). Highlights of my research include the recent paper “The Odds Are Odd: A Statistical Test for Detecting Adversarial Examples” published at ICML'19, the preprint "Adversarial Training Generalizes Data-dependent Spectral Norm Regularization" presented at the ICML'19 workshop on Generalization, as well as “Stabilizing Training of Generative Adversarial Networks through Regularization” published at NIPS'17. Prior to that I was developing a model of interdependent neural networks together with an algorithm that allows to localize the most influential nodes responsible for broadcasting information in the brain. I completed my bachelors and masters in theoretical physics at ETH with main focus on quantum field theory and statistical physics.

My publications: Google Scholar

Youtube interview: Stabilizing Training of GANs
Blog posts: www.inference.vc, www.microsoft.com